Deteksi Penyakit pada Daun Tomat Menggunakan Kombinasi Ekstraksi Fitur Colors Moments dan Grey Level Co-Occurrence Matrix (GLCM)

Main Article Content

Ririn Suharni Syarif
Muhammad Nur Akbar
Darmatasia

Abstract

Tomato is one of the leading horticultural crops widely cultivated by farmers in Indonesia. In addition to its high economic value, tomatoes are rich in nutrients beneficial to human health, such as vitamin C, lycopene, and other antioxidants. However, tomato productivity is highly vulnerable to decline due to various diseases, particularly those affecting the leaves. These diseases not only reduce the quality of the harvest but also significantly threaten production quantity. Therefore, early detection of leaf diseases in tomato plants is essential to help farmers, especially novice farmers, take timely and appropriate treatment actions. This study aims to develop a digital image-based detection system for tomato leaf diseases using feature extraction methods and classification algorithms. In the image pre-processing and feature extraction stages, the Color Moments algorithm is used to capture color information, while the Gray Level Co-occurrence Matrix (GLCM) represents leaf texture. The classification process is carried out using the Random Forest algorithm. The dataset used in this study was obtained from Kaggle, consisting of 5,451 images of tomato leaves categorized into six classes: Leaf Spot, Leaf Mold, Septoria Leaf Spot, Mosaic Virus, Bacterial Spot, and Healthy Leaf. Test results show that the developed model achieved an accuracy of 90%. These findings indicate that the system can detect tomato leaf diseases with a relatively high level of accuracy. The system is expected to assist farmers, especially beginners, in identifying plant diseases more quickly and accurately, thereby improving treatment efficiency and increasing crop yields.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
R. S. . Syarif, M. N. . Akbar, and D. Darmatasia, “Deteksi Penyakit pada Daun Tomat Menggunakan Kombinasi Ekstraksi Fitur Colors Moments dan Grey Level Co-Occurrence Matrix (GLCM)”, Journal Software, Hardware and Information Technology (SHIFT), vol. 5, no. 2, pp. 158–170, Jun. 2025.
Section
Article

References

BPS-statistics, “Produksi Tanaman Sayuran 2020.,” 2020. [Online]. Available: https://www.bps.go.id/.

A. Saragih and M. Sianturi, “Implementasi Metode Color Moment dan GLCM Untuk Mendeteksi Penyakit Tanaman Karet,” Inf. dan Teknol. Ilm, vol. 7, no. 2, pp. 145–151, 2020.

K. J. T. Seran and B. Baso, “Identifikasi penyakit pada foliage tanaman cendana menggunakan algoritma ID3 berdasarkan fitur GLCM dan Color Moment,” AITI, vol. 22, no. 1, pp. 73–83, 2025.

A. Anton, S. Rustad, G. F. Shidik, and A. Syukur, “Classification of tomato plant diseases through leaf using gray-level co-occurrence matrix and color moment with convolutional neural network methods,” in Smart Trends in Computing and Communications: Proceedings of SmartCom 2020, 2021, pp. 291–299.

M. Astiningrum, P. P. Arhandi, and N. A. Ariditya, “Identifikasi penyakit pada daun tomat berdasarkan fitur warna dan tekstur,” J. Inform. Polinema, vol. 6, no. 2, pp. 47–50, 2020.

L. Ratnawati and D. R. Sulistyaningrum, “Penerapan random forest untuk mengukur tingkat keparahan penyakit pada daun apel,” J. Sains Dan Seni ITS, vol. 8, no. 2, pp. A71–A77, 2020.

G. W. Mukti and R. A. B. Kusumo, “Jaringan Sosial Petani: Upaya Petani Pemula Dalam Membangun Jaringan Sosial Untuk Mengakses Sumberdaya Usahatani,” Mimb. Agribisnis J. Pemikir. Masy. Ilm. Berwawasan Agribisnis, vol. 8, no. 1, pp. 209–227, 2022.

A. Roihan, P. A. Sunarya, and A. S. Rafika, “Pemanfaatan machine learning dalam berbagai bidang,” J. Khatulistiwa Inform., vol. 5, no. 1, p. 490845, 2020.

A. Purnamawati, W. Nugroho, D. Putri, and W. F. Hidayat, “Deteksi Penyakit Daun pada Tanaman Padi Menggunakan Algoritma Decision Tree, Random Forest, Naïve Bayes, SVMdan KNN,” InfoTekJar J. Nas. Inform. dan Teknol. Jar, vol. 5, no. 1, pp. 212–215, 2020.

B. Wahyuningtyas, I. I. Tritoasmoro, and N. Ibrahim, “Identifikasi penyakit pada daun kopi menggunakan metode local binary pattern dan random forest,” eProceedings Eng., vol. 9, no. 6, 2022.

S. S. Simanjuntak, H. Sinaga, K. Telaumbanua, and A. Andri, “Klasifikasi Penyakit Daun Anggur Menggunakan Metode GLCM, Color Moment dan K* Tree,” J. SIFO Mikroskil, vol. 21, no. 2, pp. 93–104, 2020.

D. S. David and Y Justin., “Robust Iris Image Recognition System Using Normalization Process and Neural Network Techniques,” Artech J. Eng. Appl. Technol. ( AJEAT ), no. 1, pp. 1–6, 2020.

Z. Jin, J. Shang, Q. Zhu, C. Ling, W. Xie, and B. Qiang, “RFRSF: Employee turnover prediction based on random forests and survival analysis,” in Web Information Systems Engineering–WISE 2020: 21st International Conference, Amsterdam, The Netherlands, October 20–24, 2020, Proceedings, Part II 21, 2020, pp. 503–515.

W. Apriliah, I. Kurniawan, M. Baydhowi, and T. Haryati, “Prediksi kemungkinan diabetes pada tahap awal menggunakan algoritma klasifikasi Random Forest,” Sist. J. Sist. Inf., vol. 10, no. 1, pp. 163–171, 2021.

M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” J. Appl. Informatics Comput., vol. 5, no. 2, pp. 103–108, 2021.