Analisa Pola Penyebaran Pengguna Layanan Transjakarta dengan Metode K-Means Clustering

Main Article Content

Reynaldi
Raihan Jamal Faiz Djarot
Mochamad Wahyudi
Sumanto
Ade Surya Budiman

Abstract

This study analyzes the spatial distribution patterns of Transjakarta service users in Jakarta using the K-Means Clustering algorithm. The dataset, obtained from the Kaggle platform, consists of 189,501 passenger transaction records, including tap-in and tap-out locations, travel times, and user-related information. The research process involves data collection, preprocessing to remove missing values, application of the K-Means Clustering algorithm, and determination of the optimal number of clusters using the elbow method. Based on the analysis, the optimal number of clusters is identified as four (K=4). A scatter plot visualization presents user distribution patterns based on geographic coordinates and service usage times. Each cluster represents a group of users with similar travel characteristics. This analysis results in a segmentation that reflects variations in Transjakarta passenger mobility patterns and illustrates how travel activity is distributed across spatial and temporal dimensions within the urban area of Jakarta.

Downloads

Download data is not yet available.

Article Details

How to Cite
[1]
R. Reynaldi, R. J. . Faiz Djarot, M. . Wahyudi, S. . Sumanto, and A. S. . Budiman, “Analisa Pola Penyebaran Pengguna Layanan Transjakarta dengan Metode K-Means Clustering”, Journal Software, Hardware and Information Technology (SHIFT), vol. 5, no. 2, pp. 128–138, Jun. 2025.
Section
Article

References

A. Saputra and R. Yusuf, “Perbandingan Algoritma DBSCAN dan K-MEANS dalam Segmentasi Pelanggan Pengguna Transportasi Publik Transjakarta Menggunakan Metode RFM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 4, no. 4, pp. 1346–1361, 2024, doi: 10.57152/malcom.v4i4.1516.

I. Iwandini, A. Triayudi, and G. Soepriyono, “Analisa Sentimen Pengguna Transportasi Jakarta Terhadap Transjakarta Menggunakan Metode Naives Bayes dan K-Nearest Neighbor,” J. Inf. Syst. Res., vol. 4, no. 2, pp. 543–550, 2023, doi: 10.47065/josh.v4i2.2937.

A. Purnama, F. Fauziah, and N. D. Nathasia, “Smart Counter Pada Kapasitas Bus Transjakarta Menggunakan Sensor Infrared Berbasis Arduino Uno Atmega328,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 7, no. 1, pp. 175–185, 2022, doi: 10.29100/jipi.v7i1.2623.

M. Fathur, “BUS TRANSJAKARTA DI WILAYAH JAKARTA,” vol. 7, no. Sukarto 2006, pp. 7612–7617, 2024.

Andri Tio Sitorus, “ANALISIS KINERJA OPERASIONAL BUS RAPID TRANSIT TRANSJAKARTA KORIDOR 9C ( PINANG RANTI – BUNDARAN SENAYAN ) ( Transjakarta Corridor 9C Rapid Transit Bus Operational,” vol. 4, no. 2, pp. 205–212, 2024.

M. Hidayat, “Perancangan Dashboard Untuk Visualisasi Data Jumlah Penumpang Transjakarta,” Insantek, vol. 4, no. 1, pp. 32–36, 2023, doi: 10.31294/insantek.v4i1.2222.

Y. Rachmadina, M. Isradi, J. Prasetijo, A. K. Negara Dalimunte, and A. Mufhidin, “Analysis of the Choice of Commuter Line Electric Rail Train (Krl) Modes and Transjakarta Buses for the Bekasi City - East Jakarta Route,” Eng. Technol. J., vol. 8, no. 08, pp. 2655–2664, 2023, doi: 10.47191/etj/v8i8.23.

D. Tri Cahaya, D. Puspita, and R. Syahri, “Penerapan Metode K-Means Clustering Untuk Pengelompokan Potensi Padi Di Kota Pagar Alam,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 2, pp. 2187–2193, 2024, doi: 10.36040/jati.v8i2.9432.

M. Djaka Permana, A. Lia Hananto, E. Novalia, B. Huda, and T. Paryono, “Klasterisasi Data Jamaah Umrah pada Tanurmutmainah Tour Menggunakan Algoritma K-Means,” J. KomtekInfo, vol. 10, pp. 15–20, 2023, doi: 10.35134/komtekinfo.v10i1.332.

M. Bagus Herlambang and L. Theresia, “Pemetaan Kota/Kabupaten Endemis Demam Berdarah Dengue Dengan Analisis Data Science Menggunakan Algoritma Clustering,” Multimed. Jar., vol. 8, no. 1, 2023.

M. Iqbal and M. Nurul Huda, “Implementasi Algoritma K-Means Clustering dengan Jarak Euclidean dalam Mengelompokkan Daerah Penyebaran COVID-19 di Kabupaten Bogor,” vol. 2, no. 1, pp. 47–56, 2023, [Online]. Available: http://jurnal.fmipa.unmul.ac.id/index.php/basis

F. N. Dhewayani, D. Amelia, D. N. Alifah, B. N. Sari, and M. Jajuli, “Implementasi K-Means Clustering untuk Pengelompokkan Daerah Rawan Bencana Kebakaran Menggunakan Model CRISP-DM,” J. Teknol. dan Inf., vol. 12, no. 1, pp. 64–77, 2022, doi: 10.34010/jati.v12i1.6674.

A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” J. Artif. Intell. Technol. Inf., vol. 1, no. 1, pp. 20–28, 2023, doi: 10.58602/jaiti.v1i1.22.

J. Elektronika and D. A. N. Komputer, “Mengoptimalkan Proses Pembersihan Data dalam Analisis Big Data Menggunakan Pipeline Berbasis AI,” vol. 17, no. 2, pp. 657–666, 2024.

T. B. Pamungkas, S. Maesaroh, and P. Ardiansyah, “Implementasi Data Mining Pada Stok Penggunaan Barang Di Gmf Aeroasia Menggunakan Algoritma K-Means Clustering,” J. Ilm. Sains dan Teknol., vol. 7, no. 2, pp. 112–123, 2023, doi: 10.47080/saintek.v7i2.2697.

A. Rajsya and A. Rachman, “Rancang Bangun Penerapan Metode Elbow Pada K-Means Untuk Clustering Data Persediaan Barang,” vol. 1, no. 4, pp. 395–403, 2024.

G. Joelio, L. Nugrah, and M. Saputra, “Penerapan Metode Service Quality Dalam Analisis Persepsi Konsumen Pada Pelayanan Pemesanan Barang E-Commerce Di Universitas Prima Indonesia,” J. Sist. Inf. dan Ilmu Komput. Prima(JUSIKOM PRIMA), vol. 5, no. 2, pp. 40–46, 2022, doi: 10.34012/jurnalsisteminformasidanilmukomputer.v5i2.2311.

A. Supriyatna, I. Carolina, S. Janti, and A. Haidir, “Clustering Koridor Transjakarta Berdasarkan Jumlah Penumpang Dengan Algoritma K-Means,” J. Sains Komput. Inform. (J-SAKTI, vol. 4, no. 2, pp. 682–693, 2020.

B. G. Aji, D. C. A. Sondawa, M. R. Gifari, and S. Wijayanto, “Penerapan Algoritma K-Means Untuk Clustering Harga Rumah Di Bandung,” J. Ilm. Inform. Glob., vol. 14, no. 2, pp. 17–23, 2023, doi: 10.36982/jiig.v14i2.3189.