Penerapan Natural Language Processing (NLP) dengan Metode Cosine Similarity pada Sistem E-Monev untuk Pencarian Program Pembangunan Daerah
Main Article Content
Abstract
The Evaluation and Monitoring System (E-Monev) is a digital tool utilized for the periodic oversight of performance achievements and budget absorption within Regional Government Organizations (OPD). A primary challenge in its implementation lies in accurately identifying relevant regional development programs based on user text input. Conventional keyword-based search approaches are limited in their ability to comprehensively understand the semantic meaning of text, frequently yielding inaccurate or contextually irrelevant results. This study aims to design and develop a semantic search feature for the E-Monev system. It applies a Natural Language Processing (NLP) approach, employing the Cosine Similarity method and text representation based on BERT (Bidirectional Encoder Representations from Transformers). The data for this research was sourced from the Work Plan (Renja) documents of all OPDs in Bojonegoro Regency. These Renja documents were prepared in accordance with the Decree of the Minister of Home Affairs Number 900.1.15.5-3406 of 2024, which constitutes the Second Amendment to Decree of the Minister of Home Affairs Number 050-5889 of 2021, regulating the verification, validation, and inventory of updates to the classification, codification, and nomenclature of regional development and financial planning. During the analysis, both user input texts and Renja data were converted into embedding vectors, from which their semantic similarity was calculated. Test results demonstrate that the developed system significantly improves search accuracy, achieving a precision value of 0.884.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. D. Maulidin, Efektivitas Pelaksanaan Monitoring dan Evaluasi Berbasis Aplikasi e-Monev pada Rencana Kerja Organisasi Perangkat Daerah Periode 2017 (Studi Kasus Pada Badan Perencanaan Pembangunan Daerah Kabupaten Bojonegoro). Universitas Brawijaya, 2017. [Online]. Available: https://repository.ub.ac.id/id/eprint/162822/
Kementerian Dalam Negeri Republik Indonesia, “Keputusan Menteri Dalam Negeri No. 900.1.15.5-3406 Tahun 2024.” Kementerian Dalam Negeri, 2024. [Online]. Available: https://keuda.kemendagri.go.id/produkhukum/download/796/kepmendagri-no-9001155-3406-tahun-2024
E. Yulianti and N. K. Nissa, “ABSA of Indonesian customer reviews using IndoBERT: single- sentence and sentence-pair classification approaches,” Bull. Electr. Eng. Inform., vol. 13, no. 5, pp. 3579–3589, Oct. 2024, doi: 10.11591/eei.v13i5.8032.
M. Amien, “Sejarah dan Perkembangan Teknik Natural Language Processing (NLP) Bahasa Indonesia: Tinjauan tentang sejarah, perkembangan teknologi, dan aplikasi NLP dalam bahasa Indonesia,” 2023, arXiv. doi: 10.48550/ARXIV.2304.02746.
L. Zahrotun, “Comparison Jaccard similarity, Cosine Similarity and Combined Both of the Data Clustering With Shared Nearest Neighbor Method,” Comput. Eng. Appl. J., vol. 5, no. 1, pp. 11–18, Feb. 2016, doi: 10.18495/comengapp.v5i1.160.
C. D. Manning, P. Raghavan, and H. Schütze, Introduction to information retrieval. New York: Cambridge University Press, 2008.
Y. E. Rachmad, R. Ilham, and N. Indrayani, Layanan dan Tata Kelola E-Government. Green Pustaka Indonesia, 2024.
R. R. Putra, N. A. Putri, and A. D. Putra, Teknik Cosine Similarity Dan TF-IDF Dalam Analisis Data. Serasi Media Teknologi, 2024.
D. Gunawan, C. A. Sembiring, and M. A. Budiman, “The Implementation of Cosine Similarity to Calculate Text Relevance between Two Documents,” J. Phys. Conf. Ser., vol. 978, p. 012120, Mar. 2018, doi: 10.1088/1742-6596/978/1/012120.
J. T. Santoso, Desain & Analisis Sistem Berorientasi Obyek dengan UML. in Migunani. Universitas STEKOM, 2021.
L. P. Sumirat, D. Cahyono, and Y. Kristyawan, Dasar Rekayasa Perangkat Lunak. Madza Media, 2023.
A. S and P. Gnanasekaran, “Juncture of Text Preprocessing Techniques & Extracting Sentiment Analyzing of Micro-Blog Based on Machine Learning Algorithms,” in 2023 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India: IEEE, Dec. 2023, pp. 1–9. doi: 10.1109/ICSES60034.2023.10465450.
M. V. Koroteev, “BERT: A Review of Applications in Natural Language Processing and Understanding,” 2021, arXiv. doi: 10.48550/ARXIV.2103.11943.
S. Ramdany, “Penerapan UML Class Diagram dalam Perancangan Sistem Informasi Perpustakaan Berbasis Web,” J. Ind. Eng. Syst., vol. 5, no. 1, Jul. 2024, doi: 10.31599/2e9afp31.
Suhendri and D. Susanti, Desain User Interface (UI)/User Experience (UX) Menggunakan Figma. PT. Adab Indonesia, 2024.
H. Yang, Vue. JS Framework: Design and Implementation. Singapore: Springer Nature Singapore, 2023. doi: 10.1007/978-981-99-4947-2.
G. Sidelnikov, Node.js API, 1st ed. Learning Curve Books, 2020.
Sholihun and Z. S. Fatomi, Pemrograman dan komputasi numerik: menggunakan Python, Cetakan pertama. Sleman, Depok, D. I. Yogyakarta: Gadjah Mada University Press, 2021.
L. Ferrari and E. Pirozzi, Learn PostgreSQL: build and manage high-performance database solutions using PostgreSQL 12 and 13. Birmingham Mumbai: Packt, 2020.
R. Al Rasyid and D. H. U. Ningsih, “Penerapan Algoritma TF-IDF dan Cosine Similarity untuk Query Pencarian Pada Dataset Destinasi Wisata,” J. JTIK J. Teknol. Inf. Dan Komun., vol. 8, no. 1, pp. 170–178, Jan. 2024, doi: 10.35870/jtik.v8i1.1416.
F. A. Nugroho, F. Septian, D. A. Pungkastyo, and J. Riyanto, “Penerapan Algoritma Cosine Similarity untuk Deteksi Kesamaan Konten pada Sistem Informasi Penelitian dan Pengabdian Kepada Masyarakat,” J. Inform. Univ. Pamulang, vol. 5, no. 4, p. 529, Dec. 2021, doi: 10.32493/informatika.v5i4.7126.