Analisis Sentimen Pengguna Indihome dengan Metode Klasifikasi Support Vector Machine (SVM)
Main Article Content
Abstract
Indonesia Digital Home (IndiHome) is a communication service provider from PT Telekomunikasi Indonesia (Telkom) that provides several communication and data service packages such as internet, home telephone and cable television (Usee TV & IP TV) which implements copper and fiber pptic cable services. Currently, IndiHome is implementing a 100% fiber service replacement for all customers in order to produce high data speeds and more reliable services. However, the fact is that fiber optic services often receive complaints from customers due to weather and other factors. It was recorded that in 2020 internet users in Indonesia reached 196.7 million people or 73.7% million of the population and around 51.2% were social media users (Kompas.com, 2020). One of the social media with 6.43 million active users is Twitter. Twitter then became a medium for channeling opinions regarding a service, including the services provided by Indihome. Based on this, a method is needed, namely sentiment analysis to understand whether the opinion is negative or positive. The Support Vector Machine (SVM) is used to create a classification model for sentiment analysis of IndiHome service users' opinions on Twitter with an accuracy of 91.3%.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
“Blog | IndiHome,” indihome.co.id. https://indihome.co.id (diakses Jan 02, 2022).
“Sentiment Analysis and Opinion Mining | Synthesis Lectures on Human Language Technologies.” https://www.morganclaypool.com/doi/abs/10.2200/s00416ed1v01y201204hlt016 (diakses Des 15, 2021).
S. B. Bhonde dan J. R. Prasad, “Sentiment Analysis - Methods, Applications & Challenges,” vol. 6, no. 6, hlm. 7, 2015.
R. Watrianthos, “Sentiment Analysis Of Traveloka App Using Naïve Bayes Classifier Method.” INA-Rxiv, Jul 28, 2019. doi: 10.31227/osf.io/2dbe4.
C. B. Saputra, A. Muzakir, dan D. Udariansyah, “Analisis Sentimen Masyarakat Terhadap #2019GantiPresiden Berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier,” Bina Darma Conf. Comput. Sci. BDCCS, vol. 1, no. 2, Art. no. 2, 2019.
B. W. Sari dan F. F. Haranto, “IMPLEMENTASI SUPPORT VECTOR MACHINE UNTUK ANALISIS SENTIMEN PENGGUNA TWITTER TERHADAP PELAYANAN TELKOM DAN BIZNET,” Pilar Nusa Mandiri J. Comput. Inf. Syst., vol. 15, no. 2, Art. no. 2, Sep 2019, doi: 10.33480/pilar.v15i2.699.
D. Darwis, E. S. Pratiwi, dan A. F. O. Pasaribu, “PENERAPAN ALGORITMA SVM UNTUK ANALISIS SENTIMEN PADA DATA TWITTER KOMISI PEMBERANTASAN KORUPSI REPUBLIK INDONESIA,” J. Ilm. Edutic Pendidik. Dan Inform., vol. 7, no. 1, Art. no. 1, Nov 2020, doi: 10.21107/edutic.v7i1.8779.
R. E. Husna, R. Wasono, dan M. A. Haris, “ANALISIS SENTIMEN PADA TWITTER MENGENAI NETFLIX DIBLOKIR TELKOM MENGGUNAKAN SUPPORT VECTOR MACHINE,” Pros. Semin. Nas. Venue Artik.-Ris. Inov. Reson.-Teori Dan Apl. Stat. VARIANSI, vol. 2, no. 1, Art. no. 1, Mar 2021.
V. I. Santoso, G. Virginia, dan Y. Lukito, “PENERAPAN SENTIMENT ANALYSIS PADA HASIL EVALUASI DOSEN DENGAN METODE SUPPORT VECTOR MACHINE,” J. Transform., vol. 14, no. 2, Art. no. 2, Jan 2017, doi: 10.26623/transformatika.v14i2.439.
“Text Mining in Practice with R - Ted Kwartler - Google Buku.” https://books.google.co.id/books?hl=id&lr=&id=2KxaDwAAQBAJ&oi=fnd&pg=PP11&dq=Text+Mining+in+Practice+with+R.+John+Wiley+%26+Sons+Ltd.&ots=_3iK9syfpW&sig=aSCCTea3CelRN8CT2nI-671_xeM&redir_esc=y#v=onepage&q=Text%20Mining%20in%20Practice%20with%20R.%20John%20Wiley%20%26%20Sons%20Ltd.&f=false (diakses Des 15, 2021).
L. Kumar dan P. K. Bhatia, “TEXT MINING: CONCEPTS, PROCESS AND APPLICATIONS,” hlm. 5, 2010.
H. L. Lukitowati dan L. Paryatno, “Evaluasi Pelaksanaan Webinar Pusdiklat Perdagangan Dengan Menggunakan Text Mining: Analisis Saran Peserta Webinar,” Cendekia Niaga, vol. 5, no. 1, Art. no. 1, Jun 2021, doi: 10.52391/jcn.v5i1.574.
A. T. J. Harjanta, “Preprocessing Text untuk Meminimalisir Kata yang Tidak Berarti dalam Proses Text Mining,” J. Inform. Upgris, vol. 1, no. 1 Juni, Art. no. 1 Juni, 2015, doi: 10.26877/jiu.v1i1.