Sistem Rekomendasi Pemilihan Program MSIB Bagi Mahasiswa Pendidikan Informatika
Main Article Content
Abstract
This study discusses a recommendation system using a content-based filtering method with cosine similarity to help informatics education students choose the right Certified Independent Study and Internship Program (MSIB). The data used is data based on student interests, program and course data available on the MSIB web portal. The content-based filtering method is used to consider the suitability between student preferences and the MSIB program curriculum, while the cosine similarity algorithm is used to calculate the similarity score between different contents. The development of this recommendation system can assist informatics education students in choosing the MSIB program that is in accordance with the preferences of the student's interest profile. The results of the system evaluation obtained an average precision level of 89.4%, indicating that the list of recommendations provided by the system is very good and very relevant according to user preferences.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
Anugrah, I. G. Penerapan Metode N-Gram dan Cosine Similarity Dalam Pencarian Pada Repositori Artikel Jurnal Publikasi. Building of Informatics Technology and Science (BITS). 2021; 3(3): 275–284. https://doi.org/10.47065/bits.v3i3.1058
Ar-Rasyid, H., Pane, S. F., & Setyawan, M. Y. H. Pemetaan Profil Mahasiswa Untuk Memprediksi Peminatan Mahasiswa. PETIR: Jurnal Pengkajian dan Penerapan Teknik Informatika. 2023; 16(1). https://doi.org/10.33322/petir.v16i1.1337
Kemdikbud.go.id. Program Kampus Merdeka. 2022. Diakses pada 31 Mei 2023, dari https://kampusmerdeka.kemdikbud.go.id/program
Pavan Kumar, P., Vairachilai, S., Potluri, S., & Nandan Mohanty, S. (Eds.). Recommender Systems: Algorithms and Applications (1st ed.). CRC Press. 2021. https://doi.org/10.1201/9780367631888
Pavitha, N., Pungliya, V., Raut, A., Bhonsle, R., Purohit, A., Patel, A., & Shashidhar, R. Movie Recommendation and Sentiment Analysis Using Machine Learning. Global Transitions Proceedings. 2022: 279-284.
Putra, A. I., & Santika, R. R. Implementasi Machine Learning dalam Penentuan Rekomendasi Musik dengan Metode Content-Based Filtering. Edumatic: Jurnal Pendidikan Informatika. 2020; 4(1): 121-130.
Pipin, S. J., & Kurniawan, H. Analisis Sentimen Kebijakan MBKM Berdasarkan Opini Masyarakat di Twitter Menggunakan LSTM. 2022; 23(2): 197-208.
Ray, B., Garain, A., & Sarkar, R. An Ensemble-Based Hotel Recommender System Using Sentiment Analysis and Aspect Categorization of Hotel Reviews. Applied Soft Computing. 2021; 98: 106-935.
Rizky, M. I., Asror, I., & Murti, Y. R. Sistem Rekomendasi Program Studi untuk Siswa SMA Sederajat Menggunakan Metode Hybrid Recommendation dengan Content Based Filtering dan Collaborative Filtering. eProceedings of Engineering. 2020: 2776.
Raharjo, P. N., Handojo, A., & Juwiantho, H. Sistem Rekomendasi Content Based Filtering Pekerjaan dan Tenaga Kerja Potensial menggunakan Cosine Similarity. Jurnal Invra. 2022; 10(2): 47-56. https://doi.org/10.48550/arXiv.1906.00041
Wati, R., Ernawati, S., & Rachmi, H. Pembobotan TF-IDF Menggunakan Naïve Bayes Pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH TF-IDF Weighting Using Naïve Bayes on Public Sentiment on The Issue of Rising BIPIH. Jurnal Manajemen Informatika (JAMIKA). 2023; 13(1): 84–93. https://doi.org/10.34010/jamika.v13i1.9424