Analisis Sentimen Terhadap Jasa Ekspedisi Pos Indonesia Pada Sosial Media Twitter Menggunakan Naïve Bayes Classifier

Main Article Content

Muhammad Nur Akbar
Darmatasia
Yulia Ardana

Abstract

Nowdays, the rapid growth of information technology positively impacts companies engaged in industry, sales, and services, especially e-commerce. The increase in the number of transactions in various e-commerce impacts the increase in the use of expedition services. Pos Indonesia is the oldest expedition service provider in Indonesia and is required to be able to innovate in providing the best service for its customers. The importance of customers for a company depends on how the company builds customer relationships. A strong company will have good customer relations. Many customers have expressed their opinions regarding Pos Indonesia through Twitter. In this study, text mining techniques are used, namely sentiment analysis which helps analyze opinions, sentiments, evaluations, assessments, attitudes, and public emotions towards Pos Indonesia services. Naïve Bayes Classifier was chosen because it is simple, fast, and has high accuracy. The Naïve Bayes Classifier has successfully classified positive and negative sentiments on 100 tweets from Pos Indonesia customers with an accuracy of 87%.

Article Details

Section
Art Jun

References

A. F. Hidayatullah and S. N. Azhari. (2014). Analisis Sentimen dan Klasifikasi Kategori Terhadap Tokoh Publik pada Twitter. Seminar Nasional Informatika, Agustus 2014.

Azevedo, A. and Santos, M.F. (2008) KDD, SEMMA and CRISP-DM: A Parallel Overview. Proceedings of the IADIS European Conference Data Mining, Amsterdam, 24-26 July 2008, 182-185.

B. M. Pintoko and K. Muslim L. (2018). Analisis Sentimen Jasa Transportasi Online pada Twitter Menggunakan Metode Naïve Bayes Classifier. e- Proceeding of Engineering, vol. 5, no. 3, Desember 2018.

F. Ratnawati. (2018). Implementasi Algoritma Naïve Bayes Terhadap Analisis Sentimen Opini Film ada Twitter. Jurnal INOVTEK POLBENG - Seri Informatika, vol. 3, no. 1, Juni 2018.

Harlian, Milka. (2006). Machine Learning Text Categorization. Austin : University of Texas.

H. Februariyanti and E. Zuliarso. (2012). Klasifikasi Dokumen Berita Teks Bahasa Indonesia Menggunakan Ontologi. Jurnal Teknologi Informasi DINAMIK, vol. 17, no. 1, Januari 2012.

Marti Hearst. (2003). What Is Text Mining? Retrieved from http://people.ischool.berkeley.edu/~hearst/text-mining.html

Mostafa, M. (2013). More than words: Social networks ‟text mining for consumer brand sentiments"

N. Haqqizar and T. N. Larasyanti. (2019). Analisis Sentimen Terhadap Layanan Provider Telekomunikasi Telkomsel di Twitter Dengan Metode Naïve Bayes. Prosiding TAU SNAR-TEK 2019 Seminar Nasional Rekayasa dan Teknologi, November 2019.

Ravichandran, M., & Kulanthaivel, G. (2014). Twitter Sentiment Mining (TSM) Framework Based Learners Emotional State Classification And Visualization For E-Learning System. Journal of Theoretical and Applied Information Technology , 69 (1), 84-90.

R. Habibi, D. B. Setyohadi and Ernawati. (2016). Analisis Sentimen pada Twitter Mahasiswa Menggunakan Metode Backpropagation. INFORMATIKA, vol. 12, no. 1, April 2016.

R. Raksanagara, Y. H. Chrisnanto and A. I. Hadiana. (2016). Analisis Sentimen Jasa Ekspedisi Barang Menggunakan Metode Naïve Bayes. Prosiding SNST, 2016.

S. Gusriani, K. D. K. Wardhani and M. I. Zul. (2016). Analisis Sentimen Terhadap Toko Online di Sosial Media Menggunakan Metode Klasifikasi Naïve Bayes (Studi Kasus: Facebook Page Berrybenka).

Shearer, C. (2000). The CRISP-DM Model: The New Blueprint for Data Mining. Journal of Data Warehousing, 5, 13-22.

Utami, P. D. (2018). Analisis Sentimen Review Kosmetik Bahasa Indonesia Menggunakan Algoritma Naïve Bayes.